Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Frequency phase transfer (FPT) is a technique designed to increase coherence and sensitivity in radio interferometry by making use of the nondispersive nature of the troposphere to calibrate high-frequency data using solutions derived at a lower frequency. While the Korean very long baseline interferometry (VLBI) network has pioneered the use of simultaneous multiband systems for routine FPT up to an observing frequency of 130 GHz, this technique remains largely untested in the (sub)millimeter regime. A recent effort has been made to outfit dual-band systems at (sub)millimeter observatories participating in the Event Horizon Telescope (EHT) and to test the feasibility and performance of FPT up to the observing frequencies of the EHT. We present the results of simultaneous dual-frequency observations conducted in 2024 January on an Earth-sized baseline between the IRAM 30-m in Spain and the James Clerk Maxwell Telescope (JCMT) and Submillimeter Array (SMA) in Hawai‘i. We performed simultaneous observations at 86 and 215 GHz on the bright sources J0958+6533 and OJ 287, with strong detections obtained at both frequencies. We observe a strong correlation between the interferometric phases at the two frequencies, matching the trend expected for atmospheric fluctuations and demonstrating for the first time the viability of FPT for VLBI at a wavelength of ∼1 millimeter. We show that the application of FPT systematically increases the 215 GHz coherence on all averaging timescales. In addition, the use of the colocated JCMT and SMA as a single dual-frequency station demonstrates the feasibility of paired-antenna FPT for VLBI for the first time, with implications for future array capabilities (e.g., Atacama Large Millimeter/submillimeter Array subarraying and ngVLA calibration strategies).more » « lessFree, publicly-accessible full text available March 26, 2026
- 
            ABSTRACT We present a multiwavelength observation of a cool core that does not appear to be associated with any galaxy, in a nearby cluster, Abell 1142. Its X-ray surface brightness peak of ≲2 keV is cooler than the ambient intracluster gas of ≳3 keV, and is offset from its brightest cluster galaxy (BCG) by 80 kpc in projection, representing the largest known cool core – BCG separation. This BCG-less cool core allows us to measure the metallicity of a cluster centre with a much-reduced contribution from the interstellar medium (ISM) of the BCG. XMM–Newton observation reveals a prominent Fe abundance peak of $$1.07^{+0.16}_{-0.15}$$ Z⊙ and an α/Fe abundance ratio close to the solar ratio, fully consistent with those found at the centres of typical cool core clusters. This finding hints that BCGs play a limited role in enriching the cluster centres. However, the discussion remains open, given that the α/Fe abundance ratios of the orphan cool core and the BCG ISM are not significantly different. Abell 1142 may have experienced a major merger more than 100 Myr ago, which has dissociated its cool core from the BCG. This implies that the Fe abundance peak in cool core clusters can be resilient to cluster mergers. Our recent Institut de Radio Astronomie Millimétrique 30-m observation did not detect any CO emission at its X-ray peak and we find no evidence for massive runaway cooling in the absence of recent active galactic nucleus feedback. The lack of a galaxy may contribute to an inefficient conversion of the ionized warm gas to the cold molecular gas.more » « less
- 
            Aims.We investigated the polarization and Faraday properties of Messier 87 (M87) and seven other radio-loud active galactic nuclei (AGNs) atλ0.87 mm (345 GHz) using the Atacama Large Millimeter/submillimeter Array (ALMA). Our goal was to characterize the linear polarization (LP) fractions, measure Faraday rotation measures (RMs), and examine the magnetic field structures in the emission regions of these AGNs. Methods.We conducted full-polarization observations as part of the ALMA Band 7 very long baseline interferometry (VLBI) commissioning during the April 2021 Event Horizon Telescope (EHT) campaign. We analyzed the LP fractions and RMs to assess the nature of Faraday screens and magnetic fields in the submillimeter emission regions. Results.We find LP fractions between 1% and 17% and RMs exceeding 105 rad m−2, which are 1–2 orders of magnitude higher than typically observed at longer wavelengths (λ>3 mm). This suggests denser Faraday screens or stronger magnetic fields. Additionally, we present the first submillimeter polarized images of the M87 jet and the observed AGNs, revealing RM gradients and sign reversals in the M87 jet indicative of a kiloparsec-scale helical magnetic field structure. Conclusions.Our results provide essential constraints for calibrating, analyzing, and interpreting VLBI data from the EHT at 345 GHz, representing a critical step toward submillimeter VLBI imaging.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            We investigate the origin of the elliptical ring structure observed in the images of the supermassive black hole M87*, aiming to disentangle contributions from gravitational, astrophysical, and imaging effects. Leveraging the enhanced capabilities of the Event Horizon Telescope (EHT)'s 2018 array, including improved (u,v)-coverage from the Greenland Telescope, we measured the ring's ellipticity using five independent imaging methods, obtaining a consistent average value ofτ = 0.08−0.02+0.03with a position angle ofξ = 50.1−7.6+6.2 degrees. To interpret this measurement, we compared it to general relativistic magnetohydrodynamic (GRMHD) simulations spanning a wide range of physical parameters including the thermal or nonthermal electron distribution function, spins, and ion-to-electron temperature ratios in both low- and high-density regions. We find no statistically significant correlation between spin and ellipticity in GRMHD images. Instead, we identify a correlation between ellipticity and the fraction of non-ring emission, particularly in nonthermal models and models with higher jet emission. These results indicate that the ellipticity measured from the M87*emission structure is consistent with that expected from simulations of turbulent accretion flows around black holes, where it is dominated by astrophysical effects rather than gravitational ones. Future high-resolution imaging, including space very long baseline interferometry and long-term monitoring, will be essential to isolate gravitational signatures from astrophysical effects.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Abstract We report measurements of the gravitationally lensed secondary image—the first in an infinite series of so-called “photon rings”—around the supermassive black hole M87* via simultaneous modeling and imaging of the 2017 Event Horizon Telescope (EHT) observations. The inferred ring size remains constant across the seven days of the 2017 EHT observing campaign and is consistent with theoretical expectations, providing clear evidence that such measurements probe spacetime and a striking confirmation of the models underlying the first set of EHT results. The residual diffuse emission evolves on timescales comparable to one week. We are able to detect with high significance a southwestern extension consistent with that expected from the base of a jet that is rapidly rotating in the clockwise direction. This result adds further support to the identification of the jet in M87* with a black hole spin-driven outflow, launched via the Blandford–Znajek process. We present three revised estimates for the mass of M87* based on identifying the modeled thin ring component with the bright ringlike features seen in simulated images, one of which is only weakly sensitive to the astrophysics of the emission region. All three estimates agree with each other and previously reported values. Our strongest mass constraint combines information from both the ring and the diffuse emission region, which together imply a mass-to-distance ratio of 4.20 − 0.06 + 0.12 μ as and a corresponding black hole mass of (7.13 ± 0.39) × 10 9 M ⊙ , where the error on the latter is now dominated by the systematic uncertainty arising from the uncertain distance to M87*.more » « less
- 
            Context.The 2017 observing campaign of the Event Horizon Telescope (EHT) delivered the first very long baseline interferometry (VLBI) images at the observing frequency of 230 GHz, leading to a number of unique studies on black holes and relativistic jets from active galactic nuclei (AGN). In total, eighteen sources were observed, including the main science targets, Sgr A* and M 87, and various calibrators. Sixteen sources were AGN. Aims.We investigated the morphology of the sixteen AGN in the EHT 2017 data set, focusing on the properties of the VLBI cores: size, flux density, and brightness temperature. We studied their dependence on the observing frequency in order to compare it with the Blandford-Königl (BK) jet model. In particular, we aimed to study the signatures of jet acceleration and magnetic energy conversion. Methods.We modeled the source structure of seven AGN in the EHT 2017 data set using linearly polarized circular Gaussian components (1749+096, 1055+018, BL Lac, J0132–1654, J0006–0623, CTA 102, and 3C 454.3) and collected results for the other nine AGN from dedicated EHT publications, complemented by lower frequency data in the 2–86 GHz range. Combining these data into a multifrequency EHT+ data set, we studied the dependences of the VLBI core component flux density, size, and brightness temperature on the frequency measured in the AGN host frame (and hence on the distance from the central black hole), characterizing them with power law fits. We compared the observations with the BK jet model and estimated the magnetic field strength dependence on the distance from the central black hole. Results.Our observations spanning event horizon to parsec scales indicate a deviation from the standard BK model, particularly in the decrease of the brightness temperature with the observing frequency. Only some of the discrepancies may be alleviated by tweaking the model parameters or the jet collimation profile. Either bulk acceleration of the jet material, energy transfer from the magnetic field to the particles, or both are required to explain the observations. For our sample, we estimate a general radial dependence of the Doppler factorδ ∝ r≤0.5. This interpretation is consistent with a magnetically accelerated sub-parsec jet. We also estimate a steep decrease of the magnetic field strength with radiusB ∝ r−3, hinting at jet acceleration or efficient magnetic energy dissipation.more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            The Event Horizon Telescope (EHT) observation of M87∗in 2018 has revealed a ring with a diameter that is consistent with the 2017 observation. The brightest part of the ring is shifted to the southwest from the southeast. In this paper, we provide theoretical interpretations for the multi-epoch EHT observations for M87∗by comparing a new general relativistic magnetohydrodynamics model image library with the EHT observations for M87∗in both 2017 and 2018. The model images include aligned and tilted accretion with parameterized thermal and nonthermal synchrotron emission properties. The 2018 observation again shows that the spin vector of the M87∗supermassive black hole is pointed away from Earth. A shift of the brightest part of the ring during the multi-epoch observations can naturally be explained by the turbulent nature of black hole accretion, which is supported by the fact that the more turbulent retrograde models can explain the multi-epoch observations better than the prograde models. The EHT data are inconsistent with the tilted models in our model image library. Assuming that the black hole spin axis and its large-scale jet direction are roughly aligned, we expect the brightest part of the ring to be most commonly observed 90 deg clockwise from the forward jet. This prediction can be statistically tested through future observations.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Context.Many active galaxies harbor powerful relativistic jets, however, the detailed mechanisms of their formation and acceleration remain poorly understood. Aims.To investigate the area of jet acceleration and collimation with the highest available angular resolution, we study the innermost region of the bipolar jet in the nearby low-ionization nuclear emission-line region (LINER) galaxy NGC 1052. Methods.We combined observations of NGC 1052 taken with VLBA, GMVA, and EHT over one week in the spring of 2017. Our study is focused on the size and continuum spectrum of the innermost region containing the central engine and the footpoints of both jets. We employed a synchrotron-self absorption model to fit the continuum radio spectrum and we combined the size measurements from close to the central engine out to ∼1 pc to study the jet collimation. Results.For the first time, NGC 1052 was detected with the EHT, providing a size of the central region in-between both jet bases of 43 μas perpendicular to the jet axes, corresponding to just around 250 RS(Schwarzschild radii). This size estimate supports previous studies of the jets expansion profile which suggest two breaks of the profile at around 3 × 103 RSand 1 × 104 RSdistances to the core. Furthermore, we estimated the magnetic field to be 1.25 Gauss at a distance of 22 μas from the central engine by fitting a synchrotron-self absorption spectrum to the innermost emission feature, which shows a spectral turn-over at ∼130 GHz. Assuming a purely poloidal magnetic field, this implies an upper limit on the magnetic field strength at the event horizon of 2.6 × 104 Gauss, which is consistent with previous measurements. Conclusions.The complex, low-brightness, double-sided jet structure in NGC 1052 makes it a challenge to detect the source at millimeter (mm) wavelengths. However, our first EHT observations have demonstrated that detection is possible up to at least 230 GHz. This study offers a glimpse through the dense surrounding torus and into the innermost central region, where the jets are formed. This has enabled us to finally resolve this region and provide improved constraints on its expansion and magnetic field strength.more » « lessFree, publicly-accessible full text available December 1, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
